

Upper Hudson River PCB Modeling System Hydrodynamic and Sediment Transport Models

Presented by Li Zheng - Hydro/SedTran Technical Lead

Presented to LimnoTech, Ann Arbor, MI

July 14, 2010

Hydrodynamic Model Overview

- Hydrodynamic model: EFDC
 - Modified and enhanced by Anchor QEA
- Model inputs
- Calibration and validation
- Summary

Hydrodynamic Model Inputs

- Geometry and bathymetry
- Boundary conditions
 - Inflows
 - Upstream boundary for Reach 8
 - USGS gauging station at Fort Edward
 - Tributaries: gauged or estimated
 - See Tables 4-3 and 4-4, UHR Modeling System Report
 - Stage height at dams
 - See Table 4-5, UHR Modeling System Report

Hydrodynamic Model Inputs

Hydrodynamic Model Calibration and Validation

Calibration

- Stage height data collected during spring floods in 1983, 1993, and 1994
- Adjustable parameter: effective bed roughness

Effective Bottom Roughness Height z₀ Used in the Hydrodynamic Calibration

Reach	8	7	6	5	4	3	2	1
z _o (cm)	1.0	5.0	0.1	0.5	0.1	0.1	0.1	0.1

Validation

- Current velocity and stage height data collected in 2004 and 2006
- No parameters adjusted during validation

Hydrodynamic Model Calibration Results

Hydrodynamic Model Validation Results

SEDC5, RM 190 (near Griffin Island)

Hydrodynamic Model Summary

- Model adequately predicted stage height and velocity in UHR over a wide range of flow conditions
- Calibrated model was used to simulate UHR hydrodynamics for 34-year period (1977-2010)
- Hydrodynamic transport information was transferred to sediment transport model via "coupling files"

Sediment Transport Model Overview

- Description of model structure
- Development of model inputs
- Model calibration and validation
- Summary

9

Description of Model Structure

- Neglected bed load transport
 - Bed load transport has minimal effect on PCB transport
 - Bed load in the UHR is inhibited by the dams
 - Limited data to calibrate bed load in the UHR
 - Supported by bed type distributions upstream of dams
- Neglected feedback between hydrodynamics and sediment transport

Description of Model Structure

Water column transport and bed shear stress information transferred from hydro model

Description of Model Structure:

Bed Shear Stress

Skin friction shear stress

$$\tau_{sf} = \rho_w C_f q^2$$

$$C_f = \kappa^2 \ln^{-2}(11 \text{ h /k}_s)$$

$$k_s = 2d_{90}$$

• Where:

- ρ_w = water density
- C_f = bed friction coefficient
- q = near-bed velocity
- h = water depth
- k_s = effective bed roughness
- d_{90} = 90th percentile particle diameter of bed sediment

Form drag τ_{fd}

Description of Model Structure: Deposition

Cohesive particles (d ≤ 62 µm)

$$W_{s,1} = f_1(C_1, t_{sf})$$

 $P_1 = g_1(t_{sf})$

- $\overline{W_{s,1}} = f_1(C_1, t_{sf})$ \rightarrow Burban et al. (1990) data
 - Partheniades probability of deposition

Non-cohesive particles ($d > 62 \mu m$)

$$W_{sk} = f_k(d_k)$$

$$P_k = g_k(d_k, t_{sf})$$

$$P_k = g_k(d_k, t_{sf}) \rightarrow \text{Gessler probability of deposition}$$

$$\Gamma = h(d_k, t_{sf})$$

$$d_k =$$

13

Description of Model Structure: Cohesive Bed Erosion

Re-suspension potential

$$\varepsilon = \frac{a_0}{T_d^N} \left(\frac{\tau_b - \tau_{cr}}{\tau_{cr}}\right)^n,$$

$$| au_b| \ge au_{cr}$$

• Where:

- ϵ = net mass of resuspended sediment per unit surface area
- $\overline{A_o}$ = site-specific constant
- T_d = time after deposition in days
- N, n = exponents dependent upon the deposition environment
- T_b = skin friction shear stress (dynes/cm²)
- T_{cr} = effective critical shear stress (dynes/cm²)

Description of Model Structure: Cohesive Bed Erosion

 $u \rightarrow (armored bed) \qquad \underline{t_{sf}}$

- SEDZL algorithm (QEA 1999, Ziegler et al. 2000)
- Resuspension potential (ϵ) depends upon τ_{sf} and bed properties
- Resuspension parameter values determined from field data
- 3D bed model tracks spatial and temporal changes in properties

Description of Model Structure: Non-cohesive Bed Erosion

Erosion flux in non-armoring bed (Van Rijn [1984])

$$E_{na,k} = -W_{s,k}(C_{a,k} - C_{eq}),$$
 $C_{a,k} < C_{eq}$

Erosion flux from an armoring bed

$$E_{k} = f_{AS,k} P_{sus,k} S_{k} E_{na,k}$$

- Where:
 - $f_{AS,k}$ = fraction of class k sediment in the active-surface layer of the non-cohesive bed
 - $P_{sus,k}$ = probability of suspension for size class k
 - S_k = particle-shielding factor for size class k

Bed Structure

Description of Model Structure: Non-Cohesive Bed Erosion

- 3D bed model: active (surface + buffer) layer and parent bed
- Active-surface layer thicken. ~ bed shear stress and grain size dist.
- Mixing process ~ de-armoring of bed during post-flood

Initial Structure of Bed With No Active-Buffer Layer at Time = t_1

Active-Surface Layer Thickness Increases as Shear Stress Increases ($\tau_2 > \tau_1$) at Time = t_2

Active-surface Layer Thickness Decreases and Active-buffer Layer is Created as Shear Stress Decreases ($\tau_3 < \tau_2$) at Time = t_3

Active-surface Layer Thickness Decreases and Active-Buffer Layer Thickness Increases as Shear Stress Continues to Decrease ($\tau_4 < \tau_3$) at Time = t_4

Active-surface Layer Thickness Increases and Active-buffer Layer Thickness Decreases as Shear Stress Increases ($\tau_5 > \tau_4$) at Time = t_5

Active-surface Layer Thickness Increases and Active-buffer Layer is Destroyed as Shear Stress Increases ($\tau_6 > \tau_5$, $\tau_6 > \tau_2$) at Time = t_6

Development of Model Inputs

- Four sediment size classes
 - Class 1: clay/silt (<62 µm)
 - Class 2: fine sand (62 250 µm)
 - Class 3: medium/coarse sand (250- 2,000 µm)
 - Class 4: gravel (>2,000 μm)
- Each size class represented by an effective particle diameter
 - Effective particle diameters for Classes 2 and 3 were calibration parameters
 - Effective particle diameters for Class 4 were determined from grain size distribution data

Development of Model Inputs: Bed Maps

See Figures 5-2 through 5-9 and Table 5-2; UHR Modeling System Report

Development of Model Inputs: Bed Properties

- Dry (bulk) density
 - Different values for cohesive and non-cohesive bed areas within a specific reach
- Initial sediment bed composition
 - Cohesive bed: spatially constant
 - Non-cohesive bed: spatially variable
- Erosion rate properties for cohesive bed
 - Determined from shaker study data
 - Reach 8: spatially variable
 - Reaches 1-7: spatially constant within a reach

Development of Model Inputs: Boundary Conditions

- Magnitude of incoming sediment loads
 - Upstream boundary at FE: combination of data and rating curve (incorporated hysteresis effect during a flood)
 - Tributaries: rating curve estimates
- Composition of incoming sediment loads
 - Based on limited data
 - Class 1 (clay/silt) content: 75%
 - Class 2 (fine sand) content: 25% (except Moses Kill and direct drainage)

Sediment Transport Model Calibration

- Used data collected during spring flood in 1994
 - TSS concentrations
 - Solids mass balance
- Used iterative approach which combined highflow event and long-term simulations
- Calibration parameters (Table 5-9, Report)
 - Effective diameters of Classes 2 and 3
 - Exponent in active-surface layer thickness equation
 - Active-buffer layer decay rate

Sediment Transport Model Calibration

Sediment Transport Model Calibration: Mass Balance Results

Sediment Transport Model Calibration: Reach 5

Sediment Transport Model Calibration: Reaches 1 to 4

Sediment Transport Model Calibration: Mass Balances for 1994 Flood, Reaches 1 to 8

March 30 - April 29, 1994

March 31 - April 29, 1994

34

Sediment Transport Model Validation

- Used data collected during spring floods in 1993 and 1997
 - TSS concentrations
 - Sediment mass balances
- Initial bed conditions were specified using long-term simulation results
- No adjustment of model parameters during validation simulations

Sediment Transport Model Validation: 1997 Flood

Sediment Transport Model Validation: 1997 Flood

Sediment Transport Model Validation: 1993 Flood

Sediment Transport Model Validation: 1993 Flood

Sediment Transport Model Summary

- Calibration and validation results demonstrate that the model can reliably simulate sediment transport processes in the UHR
- Suspended sediment concentration, deposition fluxes, and resuspension fluxes (1977 ~ 2010) were transferred to the PCB fate model *via* "coupling files"